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Theories (including mathematical models) put forward for a particular phenomenon are unacceptable, if 

they do not satisfy certain criteria (see, for instance, [l, p. 14; and 2, pp. 19&196]). The objective criterion 

of correctness demands that the behaviour predicted by the model agrees with the observed data, to the 

accepted accuracy.$ There might be several other correct theories, to the given accuracy.§ In practice, 

preference is given to the theory which the researcher deems to be the simplest.7 

Courant, in concluding his essay (6, p. 271, emphasizes a fundamental difference between the research 

formulations and goals of the mathematician and of the scientist solving an applied problem. For the 

mathematician, the only criterion of the applicability of a theory is its logical consistency. The desire for 

generality is incompatible with the requirement that the theory should be simple. And since the object of 

mathematical research is the properties of mathematical relations, even in cases where these relations have 

arisen in mechanics, for instance, they are usually treated as abstract generalizations, and their correctness 

(in the above sense) is not discussed. 

However, if such research claims to have an applied value, it should, of course, satisfy the criteria of 
correctness and simplicity. In a number of cases, it is found that the mathematical const~ction cannot be 
applied in practice. 

This assertion is demonstrated here on the models of LindelBf and Kozlov. 

As WE KNOW, allowance can be made for a finite constraint even in the formulation of the Lagrange function. 
When solving the problem of the rocking of a solid of revolution about a horizontal plane, Lindelof also applied 
this method to a differential constraint. To fix our ideas, we shall call this construction the Lindelbf model, 
although it had been used before and was to be used subsequently. The significance of his publication lies in the 
fact that it drew the attention of Chaplygin to the problem [7]. Noting that “even when deriving the differential 
equations, Lindelof committed a major error, as a result of which his equations proved to be simpler than the 
true ones”, starting from d’Alembert, Chaplygin derives the equations that now bear his name, which are of 
much greater significance to research than the successful solution of a specific problem. But Chaplygin solves 
the problem itself without reference to his equations, and in introducing the reactions of the plane uses general 
theorems of dynamics on momentum and angular momentum. Observing that he had reduced the problem “to 
quadratures only in the case where it is reducible . . . to a basic second-order linear differential equation”, 

t PrikI. Mar. Mekh. Vol. 56, No. 4, pp. 683-692,1992. 

$“We are bound to require of every fundamental law of our mechanical system, that when applied to approximately 

correct relations it should always lead to approximately correct results, not to results which are entirely false.” [I, p. 211. 

5 Feynman asserts “. . every theoretical physicist who is any good knows six or seven different theoretical representations 

for exactly the same physics, He knows that they are all equivalent, and that nobody is ever going to be able to decide which 

one is right at that level . . .” 13, p. 1681. 

1 V. V. Novozhilov: “When any new problem arises, a rough model is first constructed. It is then verified by experiment (if 

not preceded by it) and better models are constructed, for as long as necessary” [4, p. 3611. At the very beginning of his first 

lecture, Kirchhoff puts forward the requirement of the simplicity of a theory [S, p. 51, thereby emphasizing the importance of 

this criterion in the natural sciences. 
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Chaplygin contrasts his result with that of Lindeliif, which “would appear to solve the problem . . . in its 
entirety”, reducing “everything to the execution of a few quadrature?. From this fundamental difference in 
the analytic forms of the representation of the final results, Chaplygin concludes that the “success” of Lindeliif 
is only “apparent”. 

However, it would be desirable to see how these differences show up in the motion of bodies predicted by the 
Chaplygin and Lindeliif models. Information on all its features can be obtained in graphic form by using 
modern methods of geometrical representation [S, 91. But the existence of a set of free parameters requires a 
considerable amount of work classifying and analysing the possible forms of motion and establishing the 
differences between them in the models to be compared. Nor is experimental verification very easy. Yet there 
is an object, the motion of which is well-known: a uniform sphere which rolls without slipping on a horizontal 
plane. Popular games (such as skittles and billiards) rely on the possibility of the player making a definite 
prediction of how a uniform sphere will move after receiving an initial impulse. This motion can be assumed to 
be so well known that the choice of mathematical models on the criterion of correctness in respect of this object 
is taken as justifiable [2, p. 1911. The incorrectness of the Lindeliif model, and thus its unacceptability in 
mechanics, is established in just this way below. 

Analysing the Kozlov model, which attempted to extend Hamilton’s principle to mechanical systems with 
non-integrable differential constraints, leads to the same conclusion [l&16]. Even Hertz had rejected the 
possibility of doing this: “The application of Hamilton’s principle to a material system does not exclude the 
existence of fixed connections between the chosen coordinates. But at any rate it still requires that these 
connections be mathematically expressible by finite equations between the coordinates: it does not permit the 
occurrence of connections which can only be represented by differential equations . . . Now Hamilton’s 
principle cannot be applied to such a case: or, to speak more correctly, the application, which is mathematically 
possible, leads to results which are physically false” [l, p. 191. PoincarC came to the same conclusion [17, 
p. 3281. Using the simplest example of a sphere rolling by inertia without slipping on a horizontal plane, both 
Hertz and PoincarC dispense with any mathematical calculations, restricting themselves to qualitative 
judgements of a kinematic character. Suslov turned to dynamic equations in an examination of the motion of a 
material particle [18, pp. 362-3631; he proves that “Hamilton’s principle cannot be applied to systems subject to 
non-integrable constraints”, since the equations it yields differ from the corresponding equations of Newtonian 
mechanics. 

But if correctness and simplicity are not demanded of the theory thus formulated, which is merely required 
not to be contradictory, then of course it is quite possible to create an imaginary mathematical construction of a 
system on the basis of Hamilton’s principle, introducing certain relations in the role of non-integrable 
differential constraints. This is what Kozlov does. However, in so doing he presents his construction as 
“natural” rather than purely mathematical [lo, p. 821, asserting that his “vakot dynamics, being an internally 
consistent model, applicable to the description of any mechanical system [italics and emphasis are mine, P. 
Kh.], is just as ‘true’ as the traditional non-holonomic mechanics” [12, p. 1101, and accordingly he applies it to 
classical mechanical systems with non-integrable differential constraints: Chaplygin’s sled (in one case, by 
simplifying the object under consideration [lo, p. 991, in others, by making it more complicated [12, pp. 
106-109; 15, pp. 552-553]), and the Suslov problem [ll, pp. 75-76; 15, pp. 553-5541. In these examples, he 
confines himself to obtaining (mainly approximate) analytic relations, without reducing them to the form 
needed in mechanics for comparing calculated and observed (or even expected) “motions”, even in those cases 
where this would be easy to do. 

If the Kozlov model is “applicable to the description of any mechanical system”, it would seem natural to 
apply it to an object, the motion of which is widely known and often observed, such as a uniform sphere which 
rolls by inertia without slipping on a horizontal plane. But Kozlov does not do this, possibly because of Hertz’s 
remark: “. . a sphere moving in accordance with the [Hamilton’s] principle would decidedly have the 
appearance of a living thing . . , whilst a sphere following the laws of nature would give the impression of an 
inanimate mass spinning steadily. . .” [l, p. 201. 

Notwithstanding the conclusion of Hertz, PoincarC and Suslov, Kozlov still proposes to apply a mathematical 
model of systems with non-integrable differential constraints based on Hamilton’s principle, to mechanics. It 

has therefore become necessary to give a detailed analysis of the examples mentioned above, to show that 
application of the Kozlov model yields results that are fundamentally different from observations, in any 
approximations. This means that the Kozlov model is correct, and cannot be applied to mechanics. 

With these considerations, we will first look at the problem of a uniform sphere and, for subsequent 

t Vako is a new word introduced by V. Kozlov and constructed from the first pairs of letters of his name: Valery Kozlov 

(Editor’s note). 
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comparisons, in a few rows give a solution of that problem on the basis of the general theorems of dynamics. 
The use of the Lindelof model for a sphere clearly demonstrates its unacceptability. The unacceptability of the 
Kozlov model becomes obvious immediately from the predicted trajectories of the centre of the sphere. A 
complete analysis of the examples considered by Kozlov, the problems of Chaplygin and Suslov, leads to the 
same conclusion. 

1. CLASSICAL MODELS 

It has been established from observation that, over a certain time interval (for as long as the effect of usually 
small resistances to rolling and spinning remains unnoticeable), the centre of a uniform sphere, which is 
situated on a horizontal plane and has received an initial impulse, moves in a straight line, and its axis of 
rotation maintains its direction in space (as judged from the motion of markers on the surface of the sphere). 
Choosing fixed coordinate axes in accordance with the initial data, at t = 0 we can assume 

WI = 0, WI = no, w, = n (1.1) 

v, = v0, “1 =o (1.2) 

(as usual w1 , y and o3 are the components of the angular velocity of the sphere in a fixed system of coordinates 
with a vertical third axis, vi and v2 are the components of the velocity of the centre of the sphere in the same 
system of coordinates, no is the initial value of the angular velocity of rolling, n is the initial value of the angular 
velocity of spinning and v. is the initial velocity of the centre of the sphere). 

The conditions of rolling without slipping 

f,(V,W) = u, - UWI = 0, f*Cv* w) = u, +uw, = 0 

(a is the radius of the sphere) give a relation between the initial values 

(1.3) 

“0 = an, (1.4) 

An elementary solution of the problem of the rolling of a sphere can be obtained from the general theorems 
of dynamics, by introducing the reaction (RI, R2, R3) at the point where the sphere touches the plane 

mu; = R,, mu; = R,, Jw; = aR,, Jw; = -aR,, Jw; = 0 

(m is the mass of the sphere and J is its moment of inertia about a diameter). Eliminating the reaction 
(Jwl - mav2)’ = 0, (Jw;! + mav,)’ = 0 and using (1.3), we establish that Jaw; = 0, Jo4 = 0, where 

J, = J+m’ (1.5) 

Therefore, the angular velocity of the sphere (together with the velocity of its centre) keep their initial values 
(1.1) and (1.2). This result agrees with observations to sufficient accuracy and can be taken to be correct (in the 
sense indicated above). 

But this method of solution is not always used, because not everybody allows the introduction of “obscure 
and metaphysical” concepts such as reactions [19, p. 241. The classical methods of formulating the equations of 
motion, which do not use these concepts, are more laborious. The Euler-Lagrange equations require the 
calculation of three-index symbols and the Appell equations involve the energy of accelerations. Using these 
equations in the problem of the rolling without slipping of a uniform sphere on a horizontal plane, we obtain 
the same correct result (see [20, pp. 372-374,402] for example). 

2. THE UNACCEPTABILITY OF THE LINDELOF MODEL 

Following Lindeldf, we will write the kinetic energy of the sphere T = M[m(d + $2) +J(d + 4 + Js), using 
the conditions (1.3) and the notation (1.5): L = 1/2[Jo(4+ 4) +Jw:]. W e introduce the Euler angles 0, cp and 
$, and the kinetic equations 

Then 

WI = 8’cosJ,+vP’sinesin$, W* = 8’sin$ -$‘sinOcos# (2.1) 

Wl = IL. +vp’cOse 
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FIG. 1 

The coordinate $ is cyclic: 

(2.2) 
From (2.1) and (2.2), the equations 

(--- ;; ) - g = 0, (F, =o 

can be transformed to 

w;+kw, = 0, w; - kw, = 0, k = (J, -J)n/J, (2.3) 

Thus, according to Lindelof, the components o1 and y keep their initial values and the centre of the sphere 
moves in a straight line only when there is no spinning (n = 0). But if n # 0, it follows from (2.3), the initial data 
(1.1) and (1.2). and the,conditions (1.3) that 

WI = -ne sin&t, wz = nu ax&t 

. = 
XI “1 = an0 cos kt, xi = v2 = an, sin kt 

The trajectory of the centre of the sphere is a circle. According to Lindelof, it would be possible in billiards, 
for example, to hit a ball on one side into a hole on the same side without any intermediate collision (Fig. 1). It 
is common knowledge that motion of this kind is impossible. 

The obvious disagreement between the mathematical result and the observed motion means that the 
Lindeliif model is incorrect and, therefore, unacceptable in mechanics. 

3. THE UNACCEPTABILITY OF THE KOZLOV MODEL 

The mathematical model proposed by Kozlov [lO-161 was represented [ 1 l] by the system of equations 

as* as* 
+- 

awi 
) + &.%I- 

ama 
= X,U’) (3.1) 

For a uniform sphere 

S l = %[J(w: +w: +wi)+mb: +u:)] - A,@, -aw,)-.$(u, +aw,) (3.2) 

To the coordinates q1 = 8, q2 = cp, q3 = t,b, q4 = x1, q5 = x2, Kozlov adds, as coordinates, the parameters hi, 
AZ: q6=Al, q7=h2. Following[ll], weput w4=vl, o5 = v2, w6 = A;, y = A;, which, together with (2.1) 
leads to the relations qf = aij(q) wj, in which the coefficients can depend only on 0 and +: 

sin J, 
aii = 6ijfori>3, a,, = COS+, aII = sin*, a2, =- 

sin 8 

C-J, c0se 
alI E --( 

sine 031 = --sinJ, 
case 

sine ’ a,, = -cosJ, 
sine ’ aas = 1 

The other coefficients are zero. 
Introducing the operator Xk = aika/aq; and calculating the commutators [X, , X,] = c&Xi, we find the 

non-zero parameter values c& = -cis = 1, c& = -c$ = 1, x$ = -c& = 1. We then write Eqs (3.1) and the 
function (3.2) in the form 
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(Jw, -ak,)‘+ah,w, = 0 (3.3) 

(Jw, +ah,)‘+ah,w, = 0 

Jwi-a(h,w, +h,w,) = 0 (3.4) 

(mu, -A,)’ = 0, (mu, - Al)’ = 0 (3.5) 

u, -a+ = 0, u* +uwt = 0 (3.6) 

We introduce the new variables K and u, putting 

A, = mPK#SU, h, = matcsina (3.7) 

We express the constants of integration of Eqs (3.5) in terms of constants c and E: v1 = a(~coso+ccos~), 

v2 = a(tcsina+csin~) and, obviously, without loss of generality, we can take cS0. From (3.6) it then follows 
that 

Wl = -Ksina-csine, W? = Kcosa+ccosC (3.8) 

We substitute these values and those of (3.7) into (3.3) and find that 

K = const (3.9) 

W3 = J,(ma’)e’a’ (3.10) 

If Al = A2 = 0, from (3.3)-(3.5) we obtain the equations of motion of a sphere on a perfectly smooth plane 
Jwl = 0, (i = 1, 2, 3), mv,: = 0 (j = 1, 2), which differ from those of Sec. 1 in the absence of horizontal 
components R,, RZ, of the constraint reactions. But if A:+ A$#O, from (3.7) and (3.9) it follows that the 
constant K can always be taken as positive: K >O. After allowing for relations (3.1), (3.7), (3.8) we write the last 
unused equation (3.4) as: CT** -m2a4(.U0)-1cKsin(cr- E) = 0. We represent the constant arising from the first 
integration in terms of the arbitrary parameter k: 

CK(k’ - ~0s’ 
a--f 

-2-j 

Putting 

2=?Z*t, n, = ma’&$J~ 

and, changing to Jacobi elliptic functions [21] we have 

cosy = kmfs, k), sin? = -dn(r, k) 

da 
- = ken (7, k) 
dr 

and from (3.81, (3.10) and (3.11) 

WI = -[c + K - ZKdn*(r, k)]sina + 

+ 2uksn(T, k) dn(r, k) COSE 

w1 = [c + K - &dn’(F, k)]cose + 

+ 2Kksn(T, k) dn(r, k) sine 

w1 = k &~icnC, k) 

(3.11) 

(3.12) 

We satisfy the initial conditions (1.1): (c- K)sine = 0, (c- K)COSE = no, kd(cdJJ) = IZ. And since, in the 
general case, no#O, we have 

~"0, C=PI,+K, k=ttfi[(n, + K)KJ~] 

and thus 

w, =‘2Kksn(T, k) dn(r, k), w, =n, + 2Kk’sn’(r, k) 

w1 = ncn(T, k) 

The parameter K is still arbitrary. 

(3.13) 

(3.14) 
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FIG. 2. 

We obtain the trajectory of the centre of the sphere by integration from (3.6), using (3.11), (3.13), (3.14) and 

(1.4) 
n*r 

x,(f)=(u.+2n*)t-2~*x J dn’(r,k)dr 
0 

(3.15) 
X?(f) = 2 

To be specific, we will restrict ourselves to values K E 10; l[ which, from (3.13), we obtain by subjecting K to 
the condition K> d&4 + JJi’n’ - ~12. 

The trajectory (3.14) successively touches the boundaries of the strip 

-ZnJ/[(n, + K) ma] <x, < 2nJ/[(n, + K) mu] 

and the quantity 

x; Xi’ - xix.; =a*kn.~cn(n,t, k) ]K + (n, + ~)[l - Zdn*(n,t, k)]l 

becomes zero at x2 = 0. Thus, the centre of the sphere should describe an undulating curve in the plane 
(Fig. 2). But motion of this kind is not observed and, therefore, the Kozlov model, like that of Lindelof, leads 
to a mathematical result which is inconsistent with the observed motion, which means that it is unacceptable in 
mechanics. 

Also, it is not single-valued, and this compounds the difficulty. The initial conditions (1.1) do not, as is 
proper in problems of mechanics, identify a unique solution that is acquired by the sphere under those initial 
conditions among the general solution (3.12) of Eqs (3.3)-(3.6). That this is inevitable follows from the 
construction of the model. Considering the problem as a variational one with restrictions (differential 
constraints), the author introduces a Lagrangian with parameters Ai. He assumes these to be “extra 
parameters” [ll, p. 711. But since these “coordinates” have no mechanical meaning, there are no rational 
premises for assigning specific initial conditions to them that correspond to the problem. The constants of 
integration that correspond to these “coordinates” must remain arbitrary, which is the reason why the resulting 
solution is not unique, even when the true coordinates satisfy the initial data. Thus, the Kozlov model is only a 
mechanical construction and does not pertain to mechanics. 

4. CHAPLYGIN’S SLED AND THE SUSLOV PROBLEM 

Experiments on the rolling of a body on a surface without slipping are easy to perform. Bodies of the simplest 
shapes (spheres or discs), with relatively little idealization, are suitable for analytic study as well. At the same 
time, in the theory of non-holonomic systems, use is made of “imaginary” constructions which, although they 
are connected with real objects, involve considerable idealization of their properties. These include 
“Chaplygin’s sled” [22, pp. 21-241, and the “non-twisting thread” in the problem of Suslov [18, pp. 593-5941. 
Yet these are the very examples that are used [lO-12, 151. 
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” 

FIG. 3. 

We will show that a more detailed analysis of the motion in the Chaplygin and Suslov problems based on the 
Kozlov theory also yields results which must be regarded as unacceptable in mechanics. 

Chaplygin’s sled has been called a “skate” in the case where the centre of mass C is above the point 0 where 
the runner touches the horizontal plane [lo, p. 991 (Fig. 3). It is assumed that there is no friction of slipping or 
spinning, and the non-holonomic constraint X* sin p - y l cos cp = 0 implies that the velocity vector v of the point 
C remains in the plane of the runner 

x‘ = ucoslp, y’ = usin 7 (4.1) 

All the classical methods [20, 22, 231 of solving this problem lead to the same result: if at the initial instant 

v=lJ#) +o. q.=w, =o (4.2) 

the skate slides uniformly along the straight line x = v,t, y = 0, cp = 0 (the unimportant arbitrary constraints x0, 
y. , cpo are eliminated by the choice of coodinate axes). This result is regarded as acceptable in mechanics (it can 
be construed as the idealized model of the motion of a skater who, after pushing himself off, slides smoothly on 
the ice). 

The Kozlov model gives a different result. It introduces the canonical impulses [lo, p. 991 

p,=x’-Asing. py=y’+hcos~, plp=.+3 

with the extra variable 

(4.3) 

h=pyCOsq -p,sin9 (4.4) 

and the Hamiltonian function 

H=%I(pxcos9+ppysin9)’ +p$] (4.5) 

Later [ll, p. 731 the variable 1 is called an “extra coordinate”. 
From (4.5) we have 

p;=o, pi=0 (4.6) 

p~=(pxcos9+pysin9)(p,sin9-ppycos9) (4.7) 

We will express the constants that appear in the integration of Eqs (4.6) in terms of the two parameters c and 
l : 

pX = csin c, py = CCOSE 

and from (4.4), (4.3) and (4.7), using (4.1) and (4.2), we have 

h=Ccos(9+~), v=csin(lp+~) 

9 ” = C’ [sin’c - sin’(9 + crJ 

from which we obtain [21] 
sin(9 + e) = ksn(r, k), cost9 + c) = dn(r, k), 

k = sine, k’ = WSE, r=KIk)+cf 

K(k)= d 
dz 

,/(I -z’)(l - k’z’) 

and from (4.1) 
x(r)=k]-k’cn(r,k)+k’;sn’(z,k)dz] 

K 

f 

y(r)=k’[m(r, k)+k’,,/ sn*(z, k)dz] 
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FIG. 4. 

These equations define the fanciful track of a skate that has received the initial impulse (4.2) (Fig. 4). It can 
hardly be regarded as acceptable in mechanics. Yet it is, of course, a consequence of the a priori principle on 
which the Kozlov theory is based. 

As in the case of a sphere, the unacceptability of the Kozlov model of the Chaplygin problem is aggravated 
by the presence in the solution of the arbitrary parameter E, as a result of which the initial conditions (4.2) do 
not define a unique solution, Nor does the existence in this set of the trajectory n = vat, y = 0, cp= 0, obtained 
for E = rrl2, save the situation, because there is no basis on which to assign a specific value to E. 

Now let us turn to Suslov’s problem. 
The system of equations 

J,,w, +(J,,w, +J,,w,-A)w, =o 

J,,w; -(J,,w, + J,,w,-X)w, -0 (4.8) 

(J,,w, + Jarw,)‘+(J,, -J,l)w,wz =IJ 

with 
x=0 (4.9) 

is the same as that obtained by Suslov, and when 

n+o, fl=A (4.10) 

these are the equations proposed by Kozlov [ll, p. 75l.t Using the integral Jii W! +J~z& = h2, following 
Suslov, we introduce the variable x. 

and substitute these expressions into the initial system (4.8): 

(4.11) 

h’sin x cosx =p (4.12) 

In Suslov’s formulation [with the value (4.9)], Eq. (4.11) establishes the dependence of x on t in terms of 
elementary functions: 

tg 
x+0 x, +a 

-= tg-e -kt 

2 2 

tga=+ &y “.hJ-~ 
I3 1, II II 

tThe unimportant component J12 of the inertial tensor that is retained in [ll] has been omitted from Eqs (4.8). 
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The important point here is that it is the components Jt3 and Jz3 of the inertial tensor characterizing the 
dynamic disbalance of the body relative to the third axis associated with the constraint that determine all the 
features of motion of the body. When J 13 = Jz3 = 0, the body rotates uniformly about a fixed axis. 

The “imaginary” model of Kozlov is a different matter. Under conditions (4.10), we eliminate A from Eqs 
(4.11) and (4.12) 

J ..+ IL - J, , 
X 

J, , J, , 
h’sinxcosx=O 

and thus the values of the components J13 and Jz3 in (4.8) h ave no effect on the dependence x(t) [or on wi (t) 
and w*(t)]. But this means that in the Kozlov model any disbalance present in the body does not show up in its 
motion. A result of this kind must be regarded as unacceptable in mechanics. 

5. “ON REALIZING A CONSTRAINT” 

The examples given above thus repudiate the assertion of Kozlov that his construction is applicable to the 
description of the motion of any mechanical system. Further, having made this assertion, Kozlov immediately 
introduces a restriction that contradicts it: “If the non-integrable relations are realized by viscous friction forces 
with a high coefficient of viscosity, it is natural to use a non-holonomic model to describe the motion . . . But if 
constraints arise as the result of a change in the Riemann metric of the system (with the help of added masses, 
for instance), then from a theoretical point of view, preference must be given to the vako model” [12, p. 1101. 
Thus, Kozlov makes an unexpected demand on mechanics: already knowing the equation of the constraint, 
introduced whilst declining to use information on the type of interaction between a given body and the body 
realizing the constraint, he writes out the equations of motion of the body only for the case where that 
information exists. The phrase that Kozlov often uses, “realizing a constraint”, is not explained. 

When constructing a mathematical model of this motion in applied mechanics, we are always dealing with a 
specific system of interacting bodies. Some of the interactions might be characterized by Newtonian forces, the 
dependence of which on the mutual positions of the bodies and their relative velocities has been established by 
experiment (observation). In those cases where the system includes bodies which are in contact, the 
physico-chemical properties of the bodies in the contact regions are very important, but as yet unpredictable. 
Whilst these interactions might be characterized by means of forces, nevertheless this is only on the basis of 
empirical dependences, which normally have very narrow ranges of application. The results of many different 
experiments have been collated, classified and published for reference in the solution of technical problems. In 
those cases where it is regarded as acceptable to ignore the physical parameters of interaction, the introduction 
of any hypothesis concerning the mechanism of interaction is totally rejected, dynamic factors are ignored, and 
only geometrical (kinematic) characteristics of the motion and observed restrictions caused by a body in contact 
with the given body are considered. “If the first body touches other bodies which restrict its freedom of 
movement in one way or another, these bodies are called constraints in relation to the first” [24, p. 191. 
Definitions of the concept of a constraint in terms of material bodies like this are usually introduced in 
theoretical systems intended for use in applications. However, the concept of a constraint has also been 
introduced in a different way, as a designation ascribed to a mathematical relation-this is the apriori axiomatic 
introduction of an initial concept that is usual in mathematics: “Let y be an m-dimensional surface in 
3n-dimensional configurational space of points rl, . , r, of mass ml, . . , m,. Let q = (41, . . , qm) be any 
coordinates on y : ri = rl (q). The system described by the equations 

d aL aL 
- - = - 
dtaq’ aq' 

L = f c mi r;’ + U(q), 

is called a system of n points, constrained by 3n - m ideal holonomic constraints” [25, pp. 66-671. Kozlov too 
introduces the term “constraint” as the designation of a mathematical relation (in the more general case, a 
differential relation) [lo, p. 92; 12, p. 1021. 

If the concept of a constraint arises in the mathematical modelling of the interactions of material bodies, 
without regard to the dynamic characteristics of interaction, then the question of “realizing the constraint” has 
no meaning and does not arise in mechanics. But if the mathematical relation, called the constraint, is taken as 
the primary object, then in the mechanics, which has met this kind of thing in the formulation of the problem, 
there is a natural tendency to attempt to establish the physical meaning of this equation. The search for such a 
meaning is called “realizing a constraint”. 
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This phase seems to have appeared for the first time in a discussion of the problem of Chaplygin’s sled. 
Fufayev [26] refers to Caratheodory’s conclusion that, instead of the unknown reaction of the plane to the 
runner, viscous friction forces should be introduced and a “constraint realized” by letting the coefficient of 
viscosity tend to infinity. The artificiality of this formulation is obvious. Viscous friction characterizes the effect 
of a fluid medium in which the assumption of anisotropy (especially of a runner that has lost its position) is 
unnatural, The mathematical construction suggested by Caratheodory was later applied to a system of general 
form [27]. 

A fundamentally different interpretation of “realizing a constraint” was proposed by Kozlov. He first used 
this phrase in connection with the problem of Suslov “on the rotation of a solid with zero projection of angular 
velocity on a fixed axis in the body”, in a proposed discussion of a procedure in which “this constraint is 
realized with the help of Kirchhoff’s problem of the motion of a solid in an infinite ideal fluid” [12, p. 1051. In 
the Chaplygin problem of a skate, Kozlov suggested “realizing the constraint” by “the motion, in an infinite 
ideal fluid, of a long weightless elliptical plate with rigidly fixed points of positive mass” [12, p. 1091. It is clear 
that there is scarcely any physical meaning in this method of “realizing the constraints” of one mechanical 
object by means of another which has no physical connection with the first. 

Considering the classical problem of the motion in an ideal fluid (which extends to infinity and is at rest at 
infinity) of a body in the shape of an ellipsoid with semi-axes a = E, b = l a, c (E and (Y are positive), Kozlov 
first assumes c = 0 and then passes to the limit as e--+0. 

The very fact that, for the limiting “infinite straight line”, under the given conditions at infinity, the problem 
of hydrodynamics has a trivial solution (an ideal fluid at rest, which “does not see” such an object) which differs 
from that proposed by Kozlov, indicates that his result is incorrect. The “vako mechanics” of Kozlov is not 
needed in the limiting problem. It is an ordinary Lagrangian system [28, pp. 234-2371 which, of course, can also 
be described by the ordinary Hamilton equations. 

Thus, in mechanics there are no objects to which Kozlov’s “vako” model has to be applied. 
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Problems associated with the limiting transition in the second-order Lagrange equations, when the 

coefficients of rigidity and viscosity and added masses tend to infinity are considered. Under certain 

conditions, the solutions of the initial equations approach those of the limiting problem with constraints. 

For integrable constraints, the limiting equations are identical with the usual equations with constraint 

multipliers. In the case of non-integrable constraints, the solutions depends closely on the way in which they 

are realized. The generalized models of the dynamics of systems with non-integrable constraints and the 

properties of the limiting equations of motion are discussed. 

~.LETx~,..., x, be generalized coordinates of a mechanical system, let T be its kinetic energy and F1, . . . , F,, 

generalized forces. If the system is “free” (that is, the coordinates x and velocities X’ are not subject to a 
non-trivial relation), then its motions can be described by the Lagrange equations 

lrl =F (1.1) 

where [f] is the variational derivative (#lax’) - df lax. 
If there is a constraint @(x0, x, t) = 0 (in applications, the function 0 is linear in x’), then Eqs (1.1) are 

usually replaced by the more general equations 

[Tl =F+Aa*/ax’, O=O, (1.2) 

where A is an as yet undefined multiplier. Let SD//ax’ #O. Then A can be put in the form of an explicit function 
of x0, x and t without solving (1.2). 
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